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ABSTRACT
The integrity and authenticity of sensor data in an Indus-
trial Control Systems (ICS) is crucial to ensure the correct-
ness of the processes in industrial facilities. Measurements
collected from remotely connected field sensors must have
their integrity and authenticity guaranteed, and any mali-
cious tampering to the data must be detected. This paper
introduces secure end-to-end data integrity verification for
ICS, a security protocol that allows the field controllers to
securely aggregate data collected from field devices, while
enabling the central controller in the back-end to verify the
integrity and data originality from its sources. Thus, com-
promise of field controllers can be detected swiftly. The
aggregated data is protected using Chameleon Hashing and
Signatures. It is then forwarded to the central controller
for verification, analysis and to facilitate the control of in-
dustrial processes. Using the Trapdoor Chameleon Hash
Function, the field devices can periodically send an evidence
to the central controller, by computing an alternative mes-
sage and a random value (m′, r′) such that m′ consists of
all previous sensor data measurements of the field device in
a specified period of time. By verifying that the Chameleon
Hash Value of (m′, r′) and the sensor data matches those
aggregated by the field controller, the central controller can
verify the integrity and authenticity of the data from the
field devices. Any data anomaly between field devices and
field controllers can be detected, thus indicating potential
compromise of field controllers.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Integrity, Authenticity, Industrial Control Systems, SCADA
security, Chameleon Hashing, End-to-end Security, Secure
Data Aggregation
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1. INTRODUCTION
Industrial Control Systems (ICS) are used to monitor and
control industrial facilities and processes. Many safety criti-
cal infrastructures such as power grid, chemical and nuclear
plants, gas and water facilities use ICS and Supervisory Con-
trol and Data Acquisition (SCADA) to collect measurements
from remotely connected field sensors and issue commands
to actuators to ensure the smooth operation of the facilities.
There is usually a well-defined process model in place in the
management of the plant, and the model is usually deployed
through ICS. With the increase connectivity in ICS, many
of them are now connected to the enterprise network using
Commercial-Off-the-Shell (COTS) IT products [14]. Due
to the critical nature of the physical devices and services
monitored by ICS, it is now a target of attacks in which at-
tackers are incentivised to take down the whole facility and
plant with the aim of crippling the national critical infras-
tructures.

In June 2010, a powerful worm named Stuxnet [20, 3] was
uncovered and was known to be able to cripple numerous
critical infrastructures including many industrial control sys-
tems (ICS) used by governmental organizations. Stuxnet ex-
ploited the vulnerability of an ICS to compromise the field
controllers. After taking control of the field devices, the
compromised field controller continues to fake “normal” field
device readings to be sent to the central controller, thus en-
suring that the device compromise remains undetected. As
field devices do not protect its reading end-to-end, but rely
on the field controller to aggregate the readings, tamper-
ing of data can be conducted easily. If end-to-end security
were provided, the field controller would not have access to
the data, and at the same time, the speed of detecting de-
vice compromise would be much faster and recovery actions
could be triggered earlier.

However, providing end-to-end security leads to several in-
efficiency to the existing system architecture: (1) Increase
in bandwidth requirement, as each field sensor reading is
secured (either signed cryptographically or MAC-ed), inter-
mediaries such as field controller, aggregators can no longer
aggregate sensor readings from different sources but to for-
ward each individual message. Thus, resulting in the in-
crease in the number of messages that are being transmit-
ted in the network, leading to network congestion problem.
(2) Increase in computational processes, as each field sen-
sor must protect its messages individually, it is required to
sign every message it transmits, and the central server has



to verify n number of messages, where n is the number of
messages. Unlike the current architecture, messages from
multiple sensors are aggregated and signed in a hierarchical
manner before they are transmitted to the central controller
for analysis and to respond to the situation.

This paper describes the implementation of delayed-integrity-
verification scheme [15] to provide end-to-end security in
ICS, while preserving the efficiency of a distributed archi-
tecture. Devices continue to be organized in a hierarchi-
cal manner, consisting of field devices and sensors, sending
data to field controllers that serve as data aggregator be-
fore the data are being forwarded to the central controller.
This approach allows the data to be aggregated and then
protected using an adapted version of chameleon signature
scheme. The field devices periodically generate a chameleon
message hash based on the sensor readings previously trans-
mitted to the field controller, to allow for the central con-
troller to verify the data’s integrity and authenticity, and
whether the field controller misbehaved by tampering with
the sensor readings. Regardless of the reliability of trans-
mission medium, end-to-end data integrity and authenticity
can be verified by the central controller with minimal effort.
Any tampering to the sensor data can be detected by the
central controller and an alarm can be triggered to act on
the misbehaving field controllers.

The paper is organized as follows: Section 2 provides some
background and discusses related work. Section 3 describes
ICS use case, the attacker models and security requirements.
Section 4 outlines the steps in providing delayed-integrity-
verification to achieve end-to-end integrity and authenticity
verification. Section 5 describes the prototype implementa-
tion and discusses preliminary results. Section 6 presents
an informal security analysis of the scheme and Section 7
concludes the paper with future work.

2. RELATED WORK
This section provides some background on Chameleon Sig-
natures [18, 17], and discusses related work on secure data
aggregation and end-to-end security.

2.1 Chameleon Hashing
Chameleon Hashing was introduced by Brassard and Chaum
[9]. It has the same properties as the normal hash function
except that it has a trapdoor in built for finding collisions.
Without the knowledge of the trapdoor, it works as a colli-
sion resistant functions on which a regular signature function
can be applied to provide authenticity and integrity to the
message.

Chameleon Hashing is associated with a pair of public and
private keys in which the private key serves as the trapdoor
for the hash function. Similar to the public key cryptogra-
phy, anyone who has knowledge of the public key can com-
pute the associated hash function. It is collision resistant in
that without the knowledge of the trapdoor, it is infeasible
to find two inputs when hashed are mapped to the same
hash value. Conversely, the holder of the trapdoor can eas-
ily find collisions for every given input, i.e., hash value. The
distinct capability of Chameleon Hashing is that it allows for
the owner of the trapdoor to change the input to the func-
tion without changing the output. Note that the efficiency

of Chameleon Hashing construction is similar or better to
that of regular digital signature.

2.2 Chameleon Signatures
Chameleon Signature [18, 17] was introduced as a much
simpler implementation of undeniable signatures [11, 10].
This scheme has an advantage over the conventional zero-
knowledge protocol as it is non-interactive. It is built simi-
lar to the traditional digital signature that is hash-then-sign
approach. A regular digital signature scheme such as RSA,
DSS or ECC is applied to a special type of hashing called
chameleon hash functions [9] as described in Section 2.1.

The Chameleon Signature scheme allows a Signer, S to sign
a message to be sent to a Recipient, R such that it gives
R the ability to forge further signatures of S at will. This
means that when R receives a signature of S on a message
m, it can produce a signature of S on any other document
m′. Consequently, when presenting the signature to a third
party, it is not possible to prove the validity of the signature
because R could have produced such a signature by himself.
However, this scheme is useful in that it provides the signer
S with the exclusive ability to prove that a forged signature
is in fact a forgery. The Signer S has the ability to prove
that R has forged the signature to a third party if he desires
to do so. The signer only needs to provide a short piece
of information as evidence for the forgery, i.e., the original
message in which when hashed produces the equivalent hash
value as claimed in the forged signature.

Although this scheme is conceptually simpler and more effi-
cient in that it is non-interactive, it appears that its applica-
tion is somewhat restricted. In this paper, we adapted the
use of Chameleon Signatures to enable secure data aggrega-
tion in a typical wireless sensor network where data produce
by multiple sources are aggregated by a third entity before
they are forwarded to the final Recipient for analysis.

2.3 Sanitizable Signatures and Transitive Sig-
natures

The notion of sanitizable signature [5] was introduced to
allow a signer to partly delegate signing rights to a semi-
trusted party called a sanitizer, so that it is allowed to
change a pre-determined part of the signed document. This
is particularly useful for applications such as authenticated
multicast, and authenticated database outsourcing because
multicast messages can be customized by a trusted sani-
tizer without compromising the integrity and authenticity
of the messages from the source. However, this scheme has
a strong assumption that the sanitizer is semi-trusted, and
it is difficult to detect dishonest sanitization in this scheme.

Transitive signatures [22, 6] and aggregate signatures [7]
both provide a mechanism to aggregate multiple signatures
into one, thus allowing for the verification of the authentic-
ity and integrity of the messages from its original sources.
In this scheme, n signatures on n distinct messages from
n distinct users can be aggregated into a single short sig-
nature. This single signature (and the n original messages)
will convince the verifier that the n users did indeed sign the
n original messages [7]. However, using such schemes would
increase the communication overhead as each source must



compute a digital signature for each message it transmits,
and then aggregated. Sensors and actuators are resource
constrained, and adopting aggregate signature scheme would
surely be too expensive.

2.4 (Datagram) Transport Layer Security
Transport Layer Security (TLS) [12] is commonly used in the
Internet to provide end-to-end application security between
two communicating end points. DTLS [25] is a datagram-
compatible adaption of TLS that runs on top of UDP. Both
protocols operate at the transport layer of TCP/IP stack
and essentially based on a security handshake to establish a
secure unicast link. The application data is then protected
end-to-end using the (D)TLS record layer. The (D)TLS
supports different types of authentication mechanism, e.g.,
using a pre-shared key, public-key certificates, and specifi-
cally DTLS supports raw public-keys authentication.

Although (D)TLS can be used to secure the communica-
tion between two end points, most applications such as ICS
and patient monitoring systems require a gateway device to
bridge an IP connection to a non-IP wireless interface such
as IEEE 802.15.4 [2], Zigbee [4], Bluetooth in order to reach
the sensors and actuators. Consequently, it is not feasible to
establish a (D)TLS secure channel end-to-end through non-
IP protocol. [8] attempted to enable E2E security between
two devices located in homogeneous networks using either
HTTP/TLS or CoAP/DTLS [26] by proposing a mapping
between TLS and DTLS. However, this assumes that the
end devices are IP-based, running 6LoWPAN [19].

2.5 ICS Communication Security
2.5.1 Modbus

Modbus [23] is the most widely deployed industrial control
communications protocol. It is an application layer proto-
col based on request-reply paradigm. It is simple and effi-
cient, making it to be easily deployable on Programmable
Logic Controller (PLC) and Remote Terminal Unit (RTU)
to communicate supervisory data to a SCADA system [16].
Unfortunately, Modbus lacks of authentication and encryp-
tion, hence vulnerable to various security attacks. It also
facilitates the re-programming of controllers and could po-
tentially be used to inject malicious logic into an RTU and
PLC. In [21], a hash-chain based authentication scheme was
proposed to authenticate the master in modbus. However,
it suffers from de-synchronization attack and tampering at-
tack [24].

2.5.2 DNP3
DNP3 [13] is a reliable and efficient protocol for use between
a master device and an outstation in a control network.
It supports bi-directional communications and exception-
based reporting. Similar to other ICS protocols, DNP3 is
used to send and receive messages between control system
devices. Communication is usually initiated by the master
to the slave, and in some cases unsolicited responses from
the slave to the master can be sent [16]. Secure DNP3 incor-
porated authentication into the protocol based on challenge-
response betweeen master and outstation. A symmetric ses-
sion key is used to perform authentication, and critical op-
erations must be authenticated before it can be executed.

The session keys can be updated using Update Key Proto-
col either using a symmetric or assymmetric scheme. DNP3
is vulnerable to MITM attacks to capture addresses, which
can be used to manipulate the system. In particular, spoof-
ing unsolicited responses to the Master to falsify events and
trick an operator into taking inappropriate actions can be
done [16].

2.5.3 Profinet
Profibus (Process fieldbus) is a Master/Slave protocol that
supports multiple masters through token sharing. Profibus
over ethernet is called Profinet [16]. When a master has
the token in possession, it can communicate with its slaves.
Typically, a master Profibus node is a PLC or RTU and
a slave is a sensor, or some control device. Profinet also
suffers from the lack of authentication, allowing a spoofed
node to impersonate a master node. Stuxnet exploited the
vulnerabilities of Profibus by compromising PLCs (master
Profibus nodes) [16].

3. INDUSTRIAL CONTROL SYSTEMS
Figure 1 illustrates an example architecture of Industrial
Control Systems (ICS). Field devices equipped with wire-
less transmission capabilities are deployed on site to monitor
the operation of an industrial (e.g., power grid, gas, petro-
chemical, manufacturing) plant. The data collected are ag-
gregated by the Field Wireless Management Station, e.g.,
PLC or RTU, and it is important that all the data collected
must be reliably reported to the Field Wireless Management
Station. At the same time, field devices, e.g., sensors and
PLCs can be configured dynamically based on the contextual
information in the plant, thus providing automation to the
control operation. This is done by the Plant Resource Man-
ager (PRM) [1] which makes automation decisions based on
the data collected from the field devices.

Figure 1: An example architecture of industrial con-
trol system [1]



As shown in Figure 1, the communication between the Field
Wireless Management Station and PRM is via ethernet con-
nection, which implies the use of TCP/IP protocol. End-
to-end communication security can be guaranteed between
them. However, as most of the field devices are not di-
rectly IP addressable, it is hence not possible to secure the
sensory data from the field devices end-to-end, but to rely
on the Field Wireless Management Station to protect its
communication links with all the field devices. Nonetheless,
application-level security can be used to protect the system
end-to-end.

3.1 Threats and Security Attacks
In this paper, we do not consider physical jamming attacks
and distributed denial-of-service attacks, but concentrating
on the potential threats in the communication channel and
data integrity.

• Eavesdropping on communication channels – Attackers
can eavesdrop on the communication channel between
the field devices and the field controllers, as well as the
channel between the field controllers and the PRM in
the backend to obtain sensor readings, commands and
aggregated data.

• Man-in-the-middle attack (MITM) – In order to save
bandwidth, sensor data are usually aggregated by the
field controller. This implies that data received from
the sensors are first decrypted, and subsequently ag-
gregated before they are re-encrypted by the field con-
troller to be sent to the central controller. In this
case, the data protection would be split into two se-
cure channels, one between the field device and the
field controller, and another between the field con-
troller and the central controller. Consequently, the
man-in-the-middle, i.e., the field controller when com-
promised or misbehaved can tamper with the data,
and selectively report data to the central controller as
occurred in Stuxnet. In a more generalized form, the
communication is vulnerable to MITM attacks when
attackers are sitting in between any of the ICS enti-
ties.

• Compromise of field controller – This results in the
ability of the field controllers to fully manipulate the
field devices, and eventually destroy them by issuing
instructions to perform out-of-norm operations, while
reporting normal operational status to the central con-
troller. In this scenario, the attacker does not need to
compromise the sheer number field devices in order to
destroy the whole system.

• Compromise of both field controller and field devices –
This would render the whole system to be subverted.
Since the attackers have obtained the cryptographic
keys of all devices in the system, it is able to manipu-
late the devices, data and the communication channels
between devices in the system. As a result, it makes
intrusion detection system (IDS) useless.

3.2 Security Requirements
Based on the architecture of ICS, we derive three main se-
curity requirements as follows:

3.2.1 Data Integrity
The measurements performed by field devices must reflect
the current state of the instruments in the plant. Therefore,
any modification to the measurements can cause inappropri-
ate decision to be made by the plant central controller. The
data integrity is not only important for analysis, it is also
useful inputs for intrusion detection system. When sensor
readings appear to drift from the normal range, this indi-
cates a potential fault in the devices in the field.

3.2.2 Data Origin Authentication
The data origin of the measurement is important to ensure
that the measurement was taken using a designated or certi-
fied device. The sensor data collected in ICS must be traced
back to its origin, in order to identify the field device that
produced the measurements. This is crucial when ascertain-
ing the status of a field device, and at the same time, such
information would be useful when performing fault diagnos-
tic to identify the faulty or misbehaving devices in the field.

3.2.3 Secure Data Aggregation
As most of the data are being aggregated, e.g., by the Field
Wireless Management Station/field controller in an ICS, this
shows that the original data have been transformed. Al-
though this poses difficulty in ensuring the data integrity
and data origin, a very important security requirement is to
ensure that the end points, i.e., the Plant Resource Man-
ager (PRM) or the central controller that receives the trans-
formed or aggregated data must have the ability to check
the integrity and data origin. In addition, any unauthorized
data modification by the field controllers, the Field Wireless
Management Station or any other intermediaries must be
detected, so that any incidents of intrusion can be detected
and acted upon swiftly.

4. IMPLEMENTING END-TO-END
DELAYED INTEGRITY VERIFICATION

This section describes the implementation and realization
of end-to-end data integrity protection for ICS based on
our previous work [15]. It allows the field controller (or
the Field Wireless Management Station) to securely aggre-
gate the data collected from field devices, while enabling the
central controller to verify the aggregated data, ensuring its
integrity and data originality from the field devices.

Our protection scheme [15] is an adaptation of Chameleon
Hashing [9] and Chameleon Signatures [18, 17] in that it al-
lows the field controller to aggregate the sensor data, com-
pute a Chameleon Hash Value (CHV ) of the aggregated
data, and then sign it using a traditional digital signature.
The aggregated data together with the signature are sent to
the central controller, thus establishing the authenticity of
the data from the field controllers. The field devices which
know the trapdoor function of the Chameleon Hash Func-
tion can periodically compute a different message, m′i and a
random value r′i, where m′i consists of all the previous sen-
sor data logged by the field device, fdi within a time period.
The combination of (m′i, r

′
i) and its Chameleon Hash Value,

CHVverify are then forwarded to the central controller for
verification via any routes available in the ICS network. It
serves as an evidence to prove that the recorded sensor data
are truly originated from the field device itself. The central



controller is then convinced of the integrity of the sensor
data and its data origin because (m′i, r

′
i) when hashed, the

resulting Chameleon Hash Value is equivalent to the CHV
sent by the field controller, and that the recorded sensor
data matches the corresponding values sent by the field de-
vices. This protocol and the salient property of Chameleon
Hashing prove that the field controllers have not been com-
promised.

4.1 Commissioning and Key Generation
Prior to the deployment of the end-to-end integrity veri-
fication scheme, field devices and the corresponding field
controller must be commissioned with the relevant crypto-
graphic keying materials. When the operating plant is first
deployed with sensors in the field, the sensors are grouped
together and then bound to a field controller. This can be
done through various device discovery protocol to enable the
field controller to discover the sensors in its proximity.

4.1.1 Generation of Chameleon Hash Function Keys
Our scheme uses the Krawczyk and Rabin’s discrete log-
arithm construction [17] to generate Chameleon Hashing
keys. Two prime numbers p and q are randomly generated
such that p = kq + 1 where q is a large enough prime factor.
An element g of order q in Z∗p is chosen so that the private
key, K′ is x ∈ Z∗p. The public key K is generated as:

y = gx mod p (1)

As shown in Figure 3, all sensors in each group are commis-
sioned with a Trapdoor Chameleon Hash Function, where
they share a key, K′ among themselves, while the respon-
sible field controller is configured with the corresponding
Chameleon Hash Function which is public (i.e., knowing K),
and this is also known to the central controller.

Figure 3: Commissioning of cryptographic keying
materials

In order to generate a Chameleon Hash, given a message
m ∈ Z∗p, choose a random value r ∈ Z∗p, the Chameleon
Hash denoted as CHV can be computed as:

CHA HASH(m, r) = gmyr mod p (2)

Such a configuration allows anyone to compute a Chameleon
Hash given a known message, while only the field devices
have the ability to produce the same chameleon hash value
using a different message, m′ such that CHA HASH(m, r)

= CHA HASH(m′, r′). This is done by solving r′ in the
following equation using K′, i.e., x:

m + xr = m′ + xr′ mod p (3)

Apart from the field devices in the group, no other entity
in the system should know the Trapdoor Chameleon Hash
Function and K′ (i.e., x).

4.2 Operation
Figure 2 shows the cryptographic operations to be performed
by the field controller and the field devices to ensure the
integrity and authenticity of the data. The details of each
operation is described in the following sections.

4.2.1 Transmission of Sensor Data
For a group of field devices fd1, fd2, fd3,..., fdn where
n is the number of sensors bound to a field controller fc,
each field device periodically reports sensor reading to the
field controller. The reporting of sensor reading can be done
through a standard secure communication channel, e.g., us-
ing DTLS between the field device and the field controller.
For example, fdi sends mij to the field controller, where i is
the device identifier, and j is the message number. This mes-
sage can be protected using DTLS Record Layer, thus pro-
viding message freshness guarantee and protection against
message replay.

Operation: Transmit Data
fdi → fc: {fdi, mij}

4.2.2 Data Aggregation
As the field controller, fc receives sensor data from multi-
ple field devices it manages, it is responsible for aggregating
the data received before forwarding them to the central con-
troller. The field controller collects n messages from the field
devices, i.e., m1j , m2j ,..., mnj where n is the number of field
devices, and j is the message number.

Operation: Aggregate Data
AggDataj : {m1j , m2j ,..., mnj}
where j is the aggregated message number and j > 0

For instance, when the field controller first receives data
from the field devices, it formulates AggData1 to be sent to
the central controller. The aggregated data is hashed using
the field controller’s Chameleon Hash Function. Once the
hash is computed, a standard digital signature scheme can
be used by the field controller to sign the aggregated data
before it is sent to the central controller.

Operation: Hash Aggregated Data
Let m = AggDataj and a random number rj is generated.
The Chameleon Hash Value, CHVfc,j is computed using
CHA HASH(m, rj) as follows:

CHVfc,j = gAggDatajyrj mod p (4)

The CHVfc,j is then signed using a digital signature scheme,
e.g., ECDSA.

Operation: Sign CHVfc,j

SEC MSGfc,j = SIGN(Privfc, CHVfc,j)



Figure 2: Protocol for reporting field device readings periodically using Chameleon Hashing

Finally, the aggregated data, and the signature are sent to
the central controller for verification. At the same time, the
resulting random number rj for generating the CHV is sent
to all the field devices managed by the field controller as a
means to acknowledge receipt of the sensor data transmitted
by the field device.

Operation: Transmit to Utility and Acknowledge fd
fc → central controller : SEC MSGfc,j , {AggDataj}, rj
fc → fd1,2,...,n: rj

4.2.3 Verification by the Central Controller
Upon receipt of the aggregated data from the field con-
troller, the central controller verifies the digital signature us-
ing the its public-key, Pubfc. During the signature verifica-
tion process, the central controller uses the field controller’s
Chameleon Hash Function to compute the CHVfc,j as the
Chameleon Hash Public-Key, K (i.e., y) is also known to
the central controller. If the verification of digital signature
is successful, the central controller accepts the integrity and
authenticity of the data received, and stores the CHVfc,j

and the data for end-to-end verification later on.

Operation: Verify Signature
VERIFY(Pubfc, AggDataj , SEC MSGfc,j)

4.3 Periodic End-to-End Integrity Verification
Since the signature is generated by the field controller, the
central controller can only believe that the data are origi-
nated from the field controllers and have not been tampered
with during transmission. However, the central controller
does not have the guarantee that the field controller had
not maliciously tampered with the aggregated data itself.
Therefore, our scheme relies on the field devices to corrob-
orate the integrity and authenticity of the aggregated data

by transmitting an evidence, known as the commitment (de-
scribed in the next section) to the central controller for end-
to-end integrity verification.

4.3.1 Transmission of Evidence
As the field devices continuously send sensor readings to the
field controller, our scheme divides time into intervals where
each interval allows the field device to send up to t messages
to the field controller. At the end of each interval, each field
device uses any of the received rv from the field controller, fc
where 1 ≤ v ≤ t and the corresponding Trapdoor Chameleon
Hash Function to compute a value, r′i such that the concate-
nation of its device identifier with all the respective data it
had sent for that period, {Idfd,i, mi,1, mi,2,..., mi,t} when
hashed together with r′i is equivalent CHVfc,v.

In essence, each field controller, fdi computes the follow-
ing: Let m′i denotes {Idfd,i,mi,1,mi,2, ...,mi,t} recorded
by the field device, fdi. The field device, fdi computes
CHA HASH(m′i, r

′
i) such that its Chameleon Hash Value,

CHVverify is equivalent to CHVfc,v. As mentioned previ-
ously, CHVfc,v is computed based on CHA HASH (AggDatav,
rv). This means that we need to solve r′i, where i is the field
device identifier, in order to generate a collision using Equa-
tion 3. In order to compute r′i, we must solve the following:

r′i mod p = (AggDatav + xrv −m′i)x
−1 mod p (5)

Although the field device has the trapdoor key K′, essen-
tially x, it does not have a copy of AggDatav, i.e., the ag-
gregated data provided by the field controller. Hence, it is
not able to derive r′i. Instead, it can provide a commitment
that will allow the central controller to verify the integrity
of the data reported by the field device and field controller.



Figure 4: End-to-End Delayed-Integrity-Verification

Operation: Field device, fdi computes a commitment

[y−x mod p], [
yxrv(−x)

ym′i(−x)
mod p] (6)

The commitment as shown above is sent to the central con-
troller to perform end-to-end integrity verification.

Since only the field devices know the Trapdoor Key, K′ or x,
no other entity can produce a different (m′i, r

′
i) when hashed,

is equivalent to CHVfc,v. The field device’s unique device
key, Idfd,i is also concatenated with the sensor data for iden-
tification purpose. It ensures that no one can impersonate
the field device. In this scheme, the field device is only re-
quired to perform the Trapdoor Chameleon Hash operation
to produce a commitment, without needing to generate any
signatures in order to sign the sensor data recorded in the
past time period. Even though the commitment could be
routed via the field controller, if it was dropped, the central
controller would be able to detect this easily and suspect
misbehaviour of the field controller.

4.3.2 Integrity Verification
As shown in Figure 4, the central controller stores all the
data received from the field controllers, including the aggre-
gated data (AggData), as well as all the Chameleon Hash
Values (CHV s) and their corresponding r values.

When the central controller receives the commitment from
each field device, it can verify the integrity and authentic-
ity of the message by ensuring that CHA HASH(mv, rv) =
CHA HASH(m′i, r′i). Given Equation 5, and the commit-
ment received, as well as the sensor data stored, the central

controller can compute yr′i as follows:

yr′i mod p = (y−x(mv))× (
yxrv(−x)

ym′i(−x)
) mod p (7)

Once yr′i is computed, the central controller can perform a
final check on the derived CHVverify by computing:

CHVverify = gm
′
iyr′i mod p (8)

The derived CHVverify must be equivalent to CHVfc,v as
indicated in Figure 4. This ensures that all the reported

readings, whether they are from the field device or the field
controller are consistent with each other, and that they have
not been tampered with. If there’s an anomaly in terms of
message values, the field controller is suspected to be faulty
or compromised. Consequently, attacks on the field con-
trollers can be detected swiftly through this scheme.

The integrity verification can take place as frequently as re-
quired depending on the severity of the application. The
verification frequency can be dynamically configured to suit
the needs of ICS applications. A close to real-time integrity
verification would require a higher number of message trans-
missions and an increase in the computation costs.

5. IMPLEMENTATION AND EVALUATION
This section describes the prototype implementation in or-
der to validate the feasibility of the protocol to provide
delayed-integrity-verification.

5.1 Prototype Implementation
The protocol was implemented using Java in order to simu-
late periodic reporting of sensor readings in an ICS network.
We used a Raspberry Pi Model B+ to act as a field device,
while a computer is used to simulate the field controller. The
Raspberry Pi has a modest computational capability, with
a CPU of 700 MHz Low Power ARM1176JZFS Applications
Processor, and 512 MB of SDRAM.

We relied on Java Cryptography Architecture (JCA) to im-
plement our security protocol. The mathematical opreations
performed by the field controller include the generation of
Chameleon Hashing (Eq. 4) and digital signature on the
CHV. As for the field device, it has to generate a commit-
ment (Eq. 6) to be sent to the central controller for verifi-
cation. Finally, the central controller has to verify (1) the
digital signature generated by the field controller, (2) the
commitments and the CHVs whether the sensor data are
integrity-preserved as shown in Eq. 7 and 8.

5.2 Preliminary Results
As shown in Table 1, using the proposed delayed-integrity-
verification scheme, the field device fd is required to gener-
ate a commitment to facilitate the integrity verification. If
we compare this with the time required to generate a digi-
tal signature on fd in order to guarantee data integrity, we



observed that our scheme incurred less computation and is
more efficient. This is because the time taken to generate
a digital signature on fd took an average of 6000 ms, while
the generation of commitment only took 111 ms.

Device Operation Time (ms)
Controller (fc) Generate CHV 0.955955
Device (fd) Generate Commit-

ment
111.6

Controller (cc) Verify Data Integrity 2.288591

Device (fd) Generate Signature 5830 ms

Table 1: Performance measurements

As the field controller, fc and the central controller, cc are
assumed to be more computationally capable than the field
devices fd, we deployed them on a PC or laptop. Conse-
quently, the time taken to generate a Chameleon Hash and
to verify data integrity on fc and cc respectively were a lot
faster than those cryptographic operations performed on the
fd. Specifically, the time taken to generate a Chameleon
Hash on fc took approximately 1 ms, while the data in-
tegrity verification on cc took roughly 2.3 ms.

6. SECURITY ANALYSIS AND DISCUSSION
This section provides an informal security analysis on the
security protocol presented in this paper.

6.1 End-to-End Integrity
The use of Chameleon Commitment Scheme allows the en-
tity which possesses the Trapdoor Chameleon Hash Func-
tion to produce a different message that yields the same
Chameleon Hash Value enables the field devices to “replace”
the message content signed by the field controller with only
the messages originated by themselves. As a result, the
central controller can easily verify the message content of
the field devices by just computing the Chameleon Hashing,
since the signature verification had been done while validat-
ing the messages sent by the field controllers.

Assuming that the field devices are trusted and have not
been compromised, the central controller must accept the
data (m′i, r

′
i) produced by the field device, as they are the

only entities in the system which are configured with the
Trapdoor Chameleon Hash Function. The field controller on
the other hand does not have the capability to do so, all
previous messages and the corresponding Chameleon Hash
Values (CHV s) it generated cannot be later modified by
itself, and hence serve as a commitment to the security of
the system.

6.2 Detection of Data Inconsistency
There could be discrepancies when the central controller
compares messages received from the field devices, with the
aggregated data signed by the field controller. This signi-
fies that there is a potential device compromise or fault in
either the field controller or the field device. The central
controller can demand all field devices to send (m′i, r

′
i) pe-

riodically, so that the central controller can cross check the
sensor readings and data received from the field controllers.
If the central controller did not receive any information from

the field devices for an extended period of time, it could well
be that the field devices have been compromised. The dis-
crepancy in the data can serve as a pre-cursor to a system
intrusion, and would be a significant event to trigger a full
intrusion detection to identify compromise devices.

6.3 Mitigating Field Controller Compromise
In case that the field controller has been compromised, it
is able to take over control of all the field devices that are
bound to it. The attacker will have access to (1) the en-
crypted channel between the field devices and itself, (2) data
reported by field devices, (3) private-key of the field con-
troller to sign messages to the central controller, (4) com-
mands and invocations to be issued to the field devices, and
(5) communication between the field devices and the central
controller.

While issuing malicious commands to the field devices, the
attacker can continue to report“normal”readings to the cen-
tral controller although the real data reported the field de-
vices show otherwise. Prior to signing the aggregated data,
the attacker can modify the data to show that operation in
the plant are normal so that the central controller is not able
to detect any abnormal operation.

With our scheme, the field devices have to periodically send
their respective (aggregated) sensor readings to the central
controller, so that the controller can perform a cross-check
on the data sent by the field devices and the one sent by the
field controller. As only the field devices have the Trapdoor
Chameleon Hash Function, no one else is able to compute
the commitment which allows the central controller to verify
the resulting CHVverify that must be equivalent to the one
sent earlier by the field controller. The central controller can
detect device compromise if there is a discrepancy between
the two data sets.

6.4 Mitigating Field Device Compromise
In case that a field device has been compromised, the at-
tacker will have access to the (1) Trapdoor Chameleon Hash
Function which is also known to other field devices under the
administration of the same field controller, (2) the encrypted
communication channel between the compromised field de-
vice and the field controller, the communication channel of
other field devices are not compromised.

The attacker can take down the compromised sensor, while
continuously send “normal” readings to the field controller.
Although the Trapdoor Chameleon Hash Function is the
same across all field devices within a group, this does not
mean that by compromising one field device, the whole group
will be compromised. This is because each field device has
its own unique secure communication channel with the field
controller, and all messages are encrypted in the channel.
As the attacker does not have access to these communica-
tion channels, it does not know the content of the messages
(m′i) and therefore even if it knows the Trapdoor Chameleon
Hash Function, it is not able to derive the required commit-

ment, i.e., [( yxrv(−x)

y
m′

i
(−x)

) mod p] for the respective field device.

Consequently, the attacker would need to compromise each
individual field device if it aims to take down the whole sys-
tem.



7. CONCLUSIONS AND FUTURE WORK
We have provided a novel use of Chameleon Signatures other
than its traditional usage, to detect misbehavior of field con-
trollers in ICS. Using the proposed end-to-end integrity ver-
ification scheme, we can ensure that the data aggregated by
the field controller is protected end-to-end in that the in-
tegrity, authenticity and data originality of the sensor data
can be guaranteed. This would be beneficial to the pro-
tection of critical infrastructures. The advantage of this
scheme is that the digital signatures generated by the field
controllers can be used to verify both the data reported by
the field devices and the field controllers themselves. The
field devices are not required to use any public-key based
signature scheme, but merely executing a (Chameleon) hash
operation.

We have also provided a security analysis to first show the
feasibility and robustness of the proposed scheme. The nat-
ural next step is to simulate the protocol in an ICS test bed
to assess the performance of the protocol in a larger scale.

Another future direction is to integrate the protocol with
an intrusion detection system. Machine learning techniques
can be used to detect any anomaly in the sensor readings.
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